#### MALAYSIA WATER RESOURCES MANAGEMENT FORUM 2012 "Time for Solutions" 26 & 27 NOVEMBER 2012 Perbadanan Putrajaya, Putrajaya

## "Water Resource Users in Malaysia – Issues and Challenges" by Shahrizaila Abdullah Senior Fellow, Academy of Sciences Malaysia

## World Water Vision Report (2000) "A Water Secure World"

"There is a water crisis today. But the crisis is not about having too little water to satisfy our needs. It is a crisis of managing water so badly that billions of people - and the environment suffer badly."

#### **GWP** Vision for a Water Secure World

- A water secure world is vital for effective green growth and a sustainable future in which there is enough water for social and economic development and for ecosystems. It thus incorporates a concern for the intrinsic value of water, with its diverse uses for human survival and well-being. Water security is becoming increasingly critical in many countries.
- Water security has been defined as the availability of an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies.

*Source: GWP Policy Brief for RIO+20 Earth Summit, June 2012* 

## **Contents of Presentation**

- 1. The Water Problem and the Malaysian Water Setting
- 2. The IWRM Water Balance
- 3. NWRP 2012 and the Guiding Tenets
- 4. <u>Water Allocation Issues & Challenges</u>
- 5. <u>Water Use Issues and Challenges</u>
- 6. STI and Water
- 7. Concluding Remarks

## 1. The Water Problem and the Malaysian Water Setting

## The Global Water Scenario

- Resources are scarce
- Demands are outstripping supplies
- Environmental/Ecological issues are serious
- Policy and institutional issues are complicated
- Current approach is sectoral and fragmented
- Financing is poor and options are expensive
- New emerging impacts from climate change

## The Water Problem

Population increase

Increased economic activity Finite, Renewable yet vulnerable resource

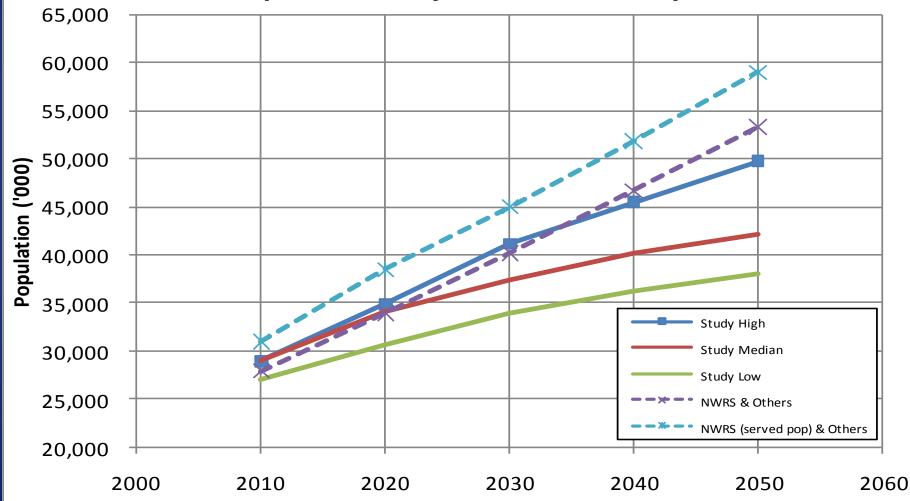
Increased water use

Increased competition and conflicts (local, national, international)

**Problem exacerbated by new emerging impacts of Climate Change** 

## The Malaysian Water Setting

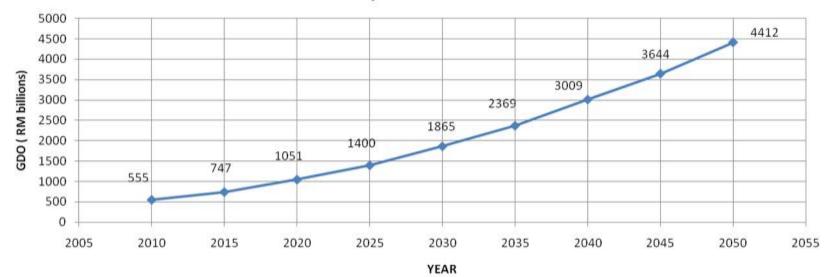
- Land Area 330, 803 sq. km. □
- <u>Population</u>:
  - 2010 28.9 million\*
  - 2020 34.1 million\*
  - 2050 42.1 million\*
- <u>GDP Projections by Economic</u> <u>Sectors (see Table)</u>
- Fairly abundant resources:
  - <u>Annual Rainfall</u> 973 BCM □
    - Evapotranspiration 414 BCM □
    - GW Recharge 63 BCM □
    - Surface Runoff 496 BCM  $\square$
- <u>Consumptive Water Demand:</u>
  - 2010 14.8 BCM \*
  - 2020 17.2 BCM \*
  - 2050 18.2 BCM \*


- Temporal and spatial variability some 'water-stressed' growth regions (Deficit States: Perlis, Kedah, Pulau Pinang, Selangor, Melaka)\*
- Increased flooding
- Deteriorating water quality of water sources (rivers, lakes and reservoirs, and groundwater)
- Emerging Climate Change Impacts
- Fragmented management and growing conflicts among sectors
- Way Forward since turn of the 21<sup>st</sup> Century - IWRM

### Malaysia: Population Projections

| State                   | Population ('000) |        |        |        |        |  |  |  |  |  |
|-------------------------|-------------------|--------|--------|--------|--------|--|--|--|--|--|
|                         | 2010              | 2020   | 2030   | 2040   | 2050   |  |  |  |  |  |
| Perlis                  | 246               | 291    | 319    | 343    | 361    |  |  |  |  |  |
| Kedah                   | 2,043             | 2,440  | 2,695  | 2,906  | 3,065  |  |  |  |  |  |
| Pulau Pinang            | 1,609             | 1,841  | 1,958  | 2,064  | 2,133  |  |  |  |  |  |
| Perak                   | 2,441             | 2,810  | 3,004  | 3,177  | 3,294  |  |  |  |  |  |
| Selangor & Kuala Lumpur | 6,970             | 7,951  | 8,443  | 8,896  | 9,195  |  |  |  |  |  |
| Negeri Sembilan         | 1,032             | 1,190  | 1,274  | 1,348  | 1,399  |  |  |  |  |  |
| Melaka                  | 785               | 925    | 1,008  | 1,078  | 1,129  |  |  |  |  |  |
| Johor                   | 3,458             | 4,117  | 4,533  | 4,879  | 5,140  |  |  |  |  |  |
| Pahang                  | 1,573             | 1,867  | 2,050  | 2,203  | 2,317  |  |  |  |  |  |
| Terengganu              | 1,149             | 1,445  | 1,672  | 1,854  | 2,006  |  |  |  |  |  |
| Kelantan                | 1,677             | 2,104  | 2,427  | 2,686  | 2,901  |  |  |  |  |  |
| Peninsula Malaysia      | 22,983            | 26,981 | 29,383 | 31,434 | 32,940 |  |  |  |  |  |
| Sarawak                 | 2,660             | 3,127  | 3,505  | 3,839  | 4,117  |  |  |  |  |  |
| Sabah                   | 3,267             | 3,874  | 4,400  | 4,719  | 4,958  |  |  |  |  |  |
| Labuan                  | 88                | 101    | 110    | 115    | 118    |  |  |  |  |  |
| East Malaysia           | 6,015             | 7,102  | 8,015  | 8,673  | 9,193  |  |  |  |  |  |
| Malaysia                | 28,998            | 34,083 | 37,398 | 40,107 | 42,133 |  |  |  |  |  |

#### **Population Projections for Malaysia**


#### **Population Projections for Malaysia**



#### Malaysia Projected GDP by Key Economic Sectors, 2010 – 2050

| Year          |      |      |       | Valu  | e in RM | billion |       |       |       | AAGR (%)      |               |  |
|---------------|------|------|-------|-------|---------|---------|-------|-------|-------|---------------|---------------|--|
|               | 2010 | 2015 | 2020  | 2025  | 2030    | 2035    | 2040  | 2045  | 2050  | 2010-<br>2020 | 2020-<br>2050 |  |
| Agriculture   | 40   | 47   | 53    | 70    | 93      | 118     | 120   | 146   | 176   | 2.8%          | 4.10%         |  |
| Mining        | 42   | 44   | 47    | 41    | 54      | 69      | 75    | 91    | 110   | 1.0%          | 2.90%         |  |
| Manufacturing | 139  | 181  | 245   | 308   | 410     | 521     | 662   | 802   | 971   | 4.3%          | 4.70%         |  |
| Construction  | 17   | 21   | 24    | 34    | 45      | 57      | 66    | 80    | 97    | 3.5%          | 4.80%         |  |
| Services      | 317  | 454  | 682   | 948   | 1,263   | 1,604   | 2,085 | 2,525 | 3,058 | 7.9%          | 5.10%         |  |
| GDP Total     | 555  | 747  | 1,051 | 1,400 | 1,865   | 2,369   | 3,009 | 3,644 | 4,412 | 6.5%          | 4.90%         |  |

GDP Projection 2010 - 2050

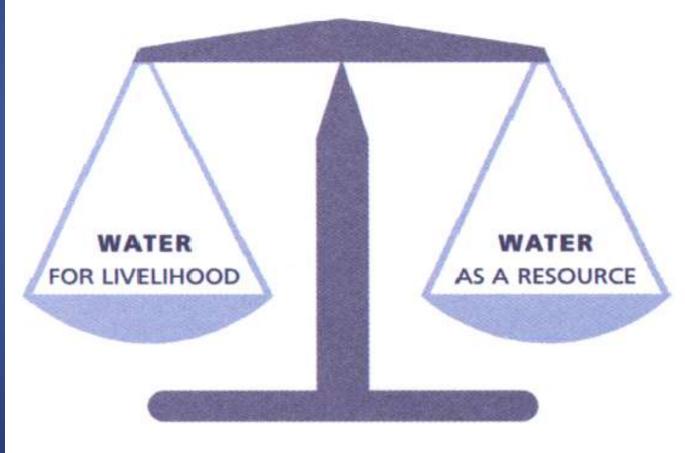


### Available Rainfall in Malaysia

|                        | Area    | Unit in Billion Cu M per year |                       |                             |                   |  |  |  |  |  |  |
|------------------------|---------|-------------------------------|-----------------------|-----------------------------|-------------------|--|--|--|--|--|--|
| State                  | (sq km) | Rainfall                      | Actual<br>Evaporation | Ground<br>water<br>Recharge | Surface<br>Runoff |  |  |  |  |  |  |
| Peninsular<br>Malaysia | 132,631 | 330.98                        | 170.28                | 19 <b>.</b> 56              | 141.11            |  |  |  |  |  |  |
| Sabah                  | 73,631  | 188.50                        | 87.62                 | 13.99                       | 86.89             |  |  |  |  |  |  |
| Sarawak                | 124,450 | 453.00                        | 155.56                | 29.87                       | 267.57            |  |  |  |  |  |  |
| FT Labuan              | 91      | 0.28                          | 0.13                  | 0.01                        | 0.14              |  |  |  |  |  |  |
| East Malaysia          | 198,172 | 641.78                        | 243.31                | 43.87                       | 354.60            |  |  |  |  |  |  |
| Malaysia               | 330,803 | 972.78                        | 413.60                | 63.45                       | 495.71            |  |  |  |  |  |  |

## **Available Rainfall in Malaysia**

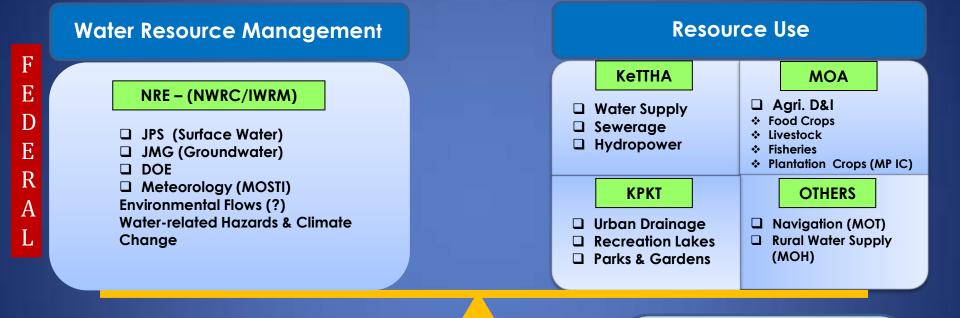
|                 | Area    |          | Unit in Billi         | ion Cu M per year        |                |                            |
|-----------------|---------|----------|-----------------------|--------------------------|----------------|----------------------------|
| State           | (sq km) | Rainfall | Actual<br>Evaporation | Ground<br>water Recharge | Surface Runoff | Effective Rain<br>BCM/Year |
| Perlis          | 821     | 1.54     | 1.06                  | 0.10                     | 0.38           | 0.06                       |
| Kedah           | 9,500   | 21.95    | 13.59                 | 1.24                     | 7.12           | 1.07                       |
| P Pinang        | 1,048   | 2.46     | 1.50                  | 0.13                     | 0.83           | 0,13                       |
| Perak           | 21,035  | 52.17    | 27.77                 | 3.58                     | 20.82          | 3.14                       |
| Selangor        | 8,396   | 18.39    | 10.75                 | 1.26                     | 6.38           | 0.96                       |
| Negeri Sembilan | 6,686   | 12.24    | 8.09                  | 0.87                     | 3.28           | 0-64                       |
| Melaka          | 1,664   | 3.13     | 2.01                  | 0.17                     | 0.95           | 0.14                       |
| Johor           | 19,210  | 47.45    | 21.71                 | 3.84                     | 21.90          | 3.29                       |
| Pahang          | 36,137  | 89.26    | 45.17                 | 4.34                     | 39.75          | 6.46                       |
| Terengganu      | 13,035  | 43.15    | 19.16                 | 1.96                     | 22.03          | 3.31                       |
| Kelantan        | 15,099  | 39.26    | 19.48                 | 2.11                     | 17.67          | 2.65                       |
| Pen Malaysia    | 132,631 | 330.98   | 170.28                | 19.56                    | 141.11         | 21.17                      |
| Sabah           | 73,631  | 188.50   | 87.62                 | 13.99                    | 86.89          | 16.21                      |
| Sarawak         | 124,450 | 453.00   | 155.56                | 29.87                    | 267.57         | 27.44                      |
| FT Labuan       | 91      | 0.28     | 0.13                  | 0.01                     | 0.14           | 0.03                       |
| East Malaysia   | 198,172 | 641.78   | 243.31                | 43.87                    | 354.60         | 53.19                      |
| Malaysia        | 330,803 | 972.78   | 413.60                | 63.45                    | 495.71         | 74.35                      |


#### Total consumptive Water Demand Against Total Surface Water Availability For All Sectors

| <b>C</b> i <b>i</b> | Land          | Total ( | Consumpt | ive Water | demand (N | ИСМ )  | Effective rain | Excess/deficit (MCM) - Unregulated Flows |        |        |        |        |  |
|---------------------|---------------|---------|----------|-----------|-----------|--------|----------------|------------------------------------------|--------|--------|--------|--------|--|
| States              | Area<br>sq km | 2010    | 2020     | 2030      | 2040      | 2050   | (MCM/Year)     | 2010                                     | 2020   | 2030   | 2040   | 2050   |  |
| Perlis              | 821           | 306     | 299      | 286       | 284       | 281    | 60             | (246)                                    | (239)  | (226)  | (224)  | (221)  |  |
| Kedah               | 9,500         | 2,922   | 2,976    | 2,842     | 2,873     | 2,876  | 1,070          | (1852)                                   | (1906) | (1772) | (1803) | (1806) |  |
| Pulau Pinang        | 1,048         | 765     | 829      | 835       | 874       | 894    | 130            | (635)                                    | (699)  | (705)  | (744)  | (764)  |  |
| Kelantan            | 15,099        | 1,632   | 1,619    | 1,586     | 1,600     | 1,604  | 2,650          | 1018                                     | 1031   | 1064   | 1050   | 1046   |  |
| Terengganu          | 13,035        | 884     | 975      | 970       | 999       | 1,026  | 3310           | 2426                                     | 2335   | 2340   | 2311   | 2284   |  |
| Perak               | 21,035        | 1,949   | 1,923    | 1,798     | 1,801     | 1,811  | 3,140          | 1191                                     | 1217   | 1342   | 1339   | 1329   |  |
| Selangor            | 8,396         | 2,238   | 2,491    | 2,570     | 2,760     | 2,922  | 960            | (1278)                                   | (1531) | (1670) | (1800) | (1962) |  |
| Pahang              | 36,137        | 726     | 946      | 897       | 911       | 959    | 6,460          | 5739                                     | 5514   | 5563   | 5549   | 5501   |  |
| Negeri<br>Sembilan  | 6,686         | 340     | 361      | 358       | 366       | 374    | 640            | 300                                      | 279    | 282    | 274    | 266    |  |
| Melaka              | 1,664         | 323     | 366      | 376       | 409       | 439    | 140            | (183)                                    | (226)  | (336)  | (269)  | (299)  |  |
| Johor               | 19,210        | 715     | 881      | 1,033     | 1,164     | 1,301  | 3,290          | 2575                                     | 2409   | 2257   | 2126   | 1989   |  |
| Pen Malaysia        | 132,631       | 12,800  | 13,664   | 13,551    | 14,040    | 14,488 | 21,170         | 8370                                     | 7506   | 7619   | 7130   | 6682   |  |
| Sabah               | 73,631        | 912     | 1,356    | 1,392     | 1,442     | 1,469  | 16,210         | 15298                                    | 14854  | 14818  | 14768  | 14741  |  |
| Sarawak             | 124,450       | 1,054   | 2,162    | 2,125     | 2,175     | 2,247  | 27,440         | 26386                                    | 25278  | 25375  | 25265  | 15193  |  |
| WP Labuan           | 91            | 18      | 24       | 26        | 28        | 29     | 30             | 12                                       | 6      | 4      | 2      | 1      |  |
| East Malaysia       | 198,172       | 1,985   | 3,541    | 3,542     | 3,645     | 3,745  | 53,190         | 51205                                    | 49649  | 49648  | 49545  | 49445  |  |
| Total<br>Malaysia   | 330,803       | 14,785  | 17,205   | 17,093    | 17,685    | 18,233 | 74,350         | 59565                                    | 57145  | 57257  | 56665  | 56117  |  |

## 2. The IWRM Water Balance

### **IWRM is a balance:** Separation of powers between 2 sides of the scale






**Integrated Water Resources Managment (IWRM)** (Applicable to both sides of the scale)

| <b>Natural System Integration</b> | Human System Integration                             |
|-----------------------------------|------------------------------------------------------|
| Freshwater <=> Coastal zone       | Mainstreaming of water                               |
| Land <=> Water                    | resources in National Policies:<br>- economic policy |
| Water <=> Wastewater              | - food policy                                        |
| Surface water <=>Groundwater      | - environment policy,                                |
| Quantity <=> Quality              | - health policy,                                     |
| Upstream <=> Downstream           | - energy policy                                      |
|                                   |                                                      |

#### **IWRM Water Balance: Malaysian Context**



|     | IWRM &IRBM (State Water       |
|-----|-------------------------------|
|     | Resources Authorities - LUAS, |
|     | LUAK, SWRC, etc ,State        |
|     | Water Resources Committees,   |
|     | SEPUs)                        |
| Env | vironmental Flows             |

S

Т

А

Т

E

- Water Supply (JBA, Water Concessionaires)
- □ Agricultural D&I (JPS)
- Rivers & Waterways (JPS)
- Urban Drainage & Recreational Lakes (Local Authorities)

## 3. NWRP 2012 and Guiding Tenets

## NWRP 2012 - Policy Statement

*"The security and sustainability of water* resources shall be made a national priority to ensure adequate and safe water for all, through sustainable use, conservation and effective management of water resources enabled by a mechanism of shared partnership involving all stakeholders.

## **NWRP 2012 - Policy Principles**

#### Water Resources Security

Water resources must be secured to ensure their availability to meet the needs and demands of both man and nature, through optimization of their potential and minimization of damaging impacts

#### Water Resources Sustainability

Water resources are the catalyst for environmental wellbeing and national development, therefore they should be sustained for present and future uses and the Federal and State Governments will look at minimizing wastage of water resources. It also opens up the opportunity to explore the use of alternative sources, and aspects related to demand management

#### Collaborative Governance

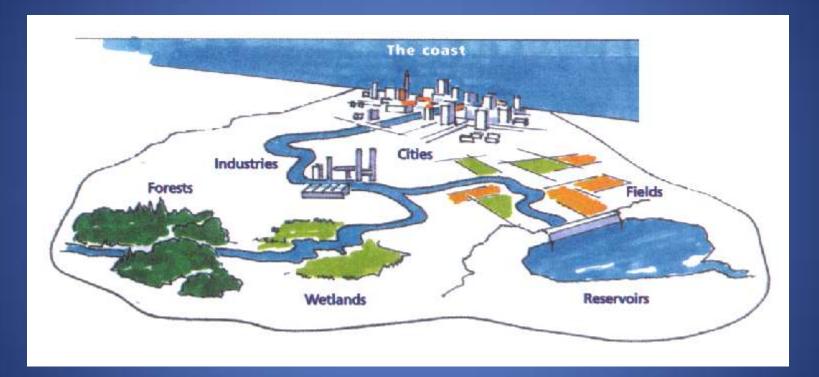
Stakeholder inclusiveness and collaboration is essential towards ensuring the security and sustainability of water resources as well as achievement of common goals towards addressing multiple resources governance concerns and priorities

## NWRP 2012 – Guiding Tenets

Water for People: All to have access to adequate and affordable water supply, hygiene and sanitation

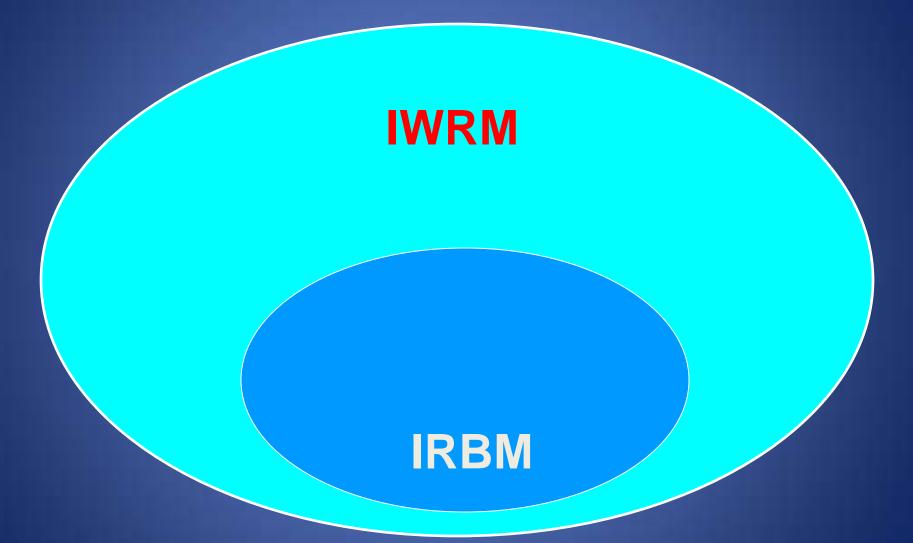
Water for Food and Rural Development: provision of sufficient water that will ensure national food security and promote rural development

Water for Economic Development: provision of sufficient water to spur and sustain economic growth within the context of a high income economy


Water for the environment: protection of the water environment to preserve water resources (both surface water and groundwater) and natural flow regimes, biodiversity and cultural heritage, along with mitigation of water-related hazards

# 4. Water Allocation – Issues & Challenges

#### 21<sup>st</sup> Century World Water Vision (year 2000) Statement Excerpt

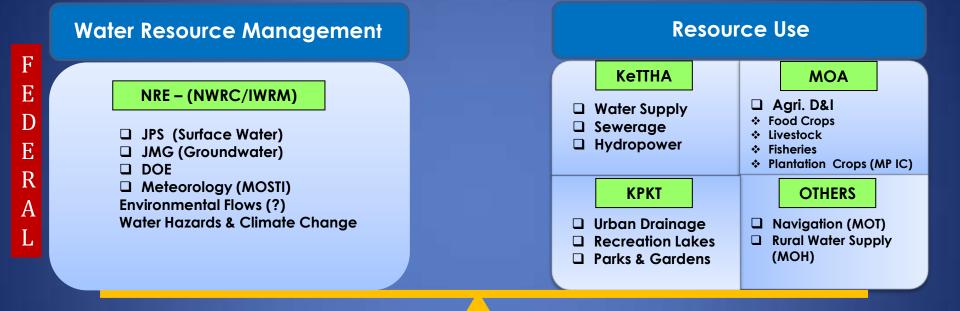

 A holistic, systemic approach relying on Integrated Water Resources Management (IWRM) must replace the fragmentation that currently exists in managing water – This is best done at the level of River basins

#### **IWRM recognises that water follows according to hydrological boundaries!**



-from small <u>local</u> basins to larger <u>inter-state</u> or <u>international</u> river basins!

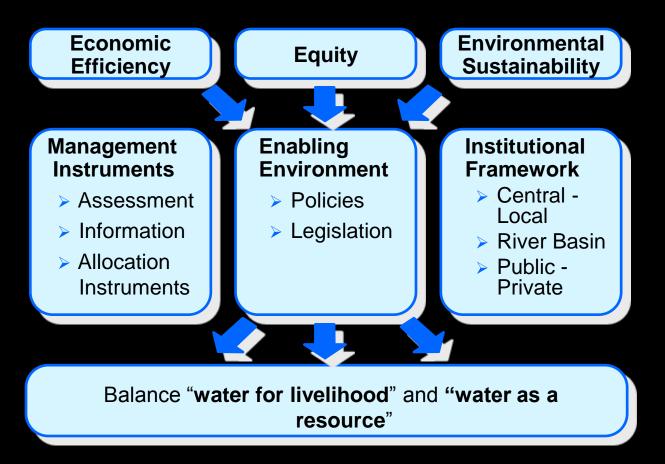
#### - and builds on river basin management




- from a water quantity and water quality perspective

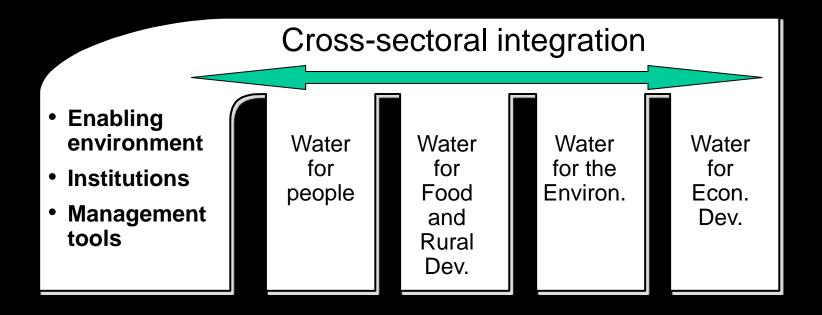
## Water Allocation by Sectors – Issues and Challenges

- Burden falls on the <u>Water Resource Managers</u> at basin, state and national levels to be the lead player /"champion" to implement the IWRM agenda in close consultation with all stakeholders (institutional, private, and community)
- Balance development goals and competing sector users
- Maintain database of comprehensive assessment of all water resources (traditional and alternative) and water demand by sectors at local, basin, state and national scales.
- Have access to decision support systems including use of physical and socio-economic models and techniques for <u>water allocation at various</u> <u>scales.</u>
- Engage stakeholders to resolve conflicts and broker trade-offs
- Allocate and maintain appropriate levels of river <u>environmental flows</u> for ecosystem livelihoods and biodiversity
- Undertake R&D programs pertaining to water security and sustainability.
- Develop competent resource managers at all levels through capacity building programs supported by complementary advocacy and awareness programs targeting all stakeholders (users and communities)


#### **IWRM Water Balance: Malaysian Context**



 IWRM &IRBM (State Water Resources Authorities - LUAS, LUAK, SWRC, etc. - ,State Water Resources Committees, SEPUs)
 Environmental Flows  Water Supply (JBA, Water Concessionaires)


- □ Agricultural D&I (JPS)
- Rivers & Waterways (JPS)
- Urban Drainage & Recreational Lakes (Local Authorities)

#### **Balancing development goals**



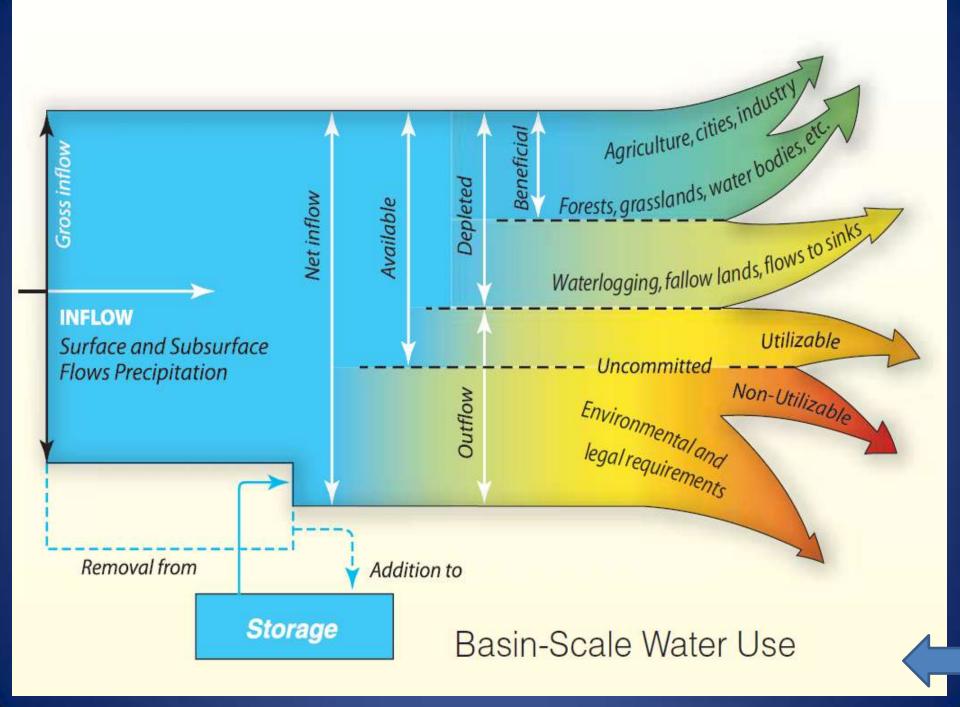
#### The three "E"s The three pillars of IWRM

## **Balancing competing sector uses:**



#### Need for emphasis on <u>multi-disciplinary</u> and <u>multi-sector</u> perspectives

## **Available Rainfall in Malaysia**


|                 | Area    |          | Unit in mm            | per year                    |                   | Unit in Billion Cu M per year |                       |                             |                   |  |  |
|-----------------|---------|----------|-----------------------|-----------------------------|-------------------|-------------------------------|-----------------------|-----------------------------|-------------------|--|--|
| State           | (sq km) | Rainfall | Actual<br>Evaporation | Ground<br>water<br>Recharge | Surface<br>Runoff | Rainfall                      | Actual<br>Evaporation | Ground<br>water<br>Recharge | Surface<br>Runoff |  |  |
| Perlis          | 821     | 1,880    | 1,290                 | 120                         | 470               | 1.54                          | 1.06                  | 0.10                        | 0.38              |  |  |
| Kedah           | 9,500   | 2,310    | 1,430                 | 130                         | 750               | 21.95                         | 13.59                 | 1.24                        | 7.12              |  |  |
| P Pinang        | 1,048   | 2,350    | 1,430                 | 120                         | 800               | 2.46                          | 1.50                  | 0.13                        | 0.83              |  |  |
| Perak           | 21,035  | 2,480    | 1,320                 | 170                         | 990               | 52.17                         | 27.77                 | 3.58                        | 20.82             |  |  |
| Selangor        | 8,396   | 2,190    | 1,280                 | 150                         | 760               | 18.39                         | 10.75                 | 1.26                        | 6.38              |  |  |
| Negeri Sembilan | 6,686   | 1,830    | 1,210                 | 130                         | 490               | 12.24                         | 8.09                  | 0.87                        | 3.28              |  |  |
| Melaka          | 1,664   | 1,880    | 1,210                 | 100                         | 570               | 3.13                          | 2.01                  | 0.17                        | 0.95              |  |  |
| Johor           | 19,210  | 2,470    | 1,130                 | 200                         | 1,140             | 47.45                         | 21.71                 | 3.84                        | 21.90             |  |  |
| Pahang          | 36,137  | 2,470    | 1,250                 | 120                         | 1,100             | 89.26                         | 45.17                 | 4.34                        | 39.75             |  |  |
| Terengganu      | 13,035  | 3,310    | 1,470                 | 150                         | 1,690             | 43.15                         | 19.16                 | 1.96                        | 22.03             |  |  |
| Kelantan        | 15,099  | 2,600    | 1,290                 | 140                         | 1,170             | 39.26                         | 19.48                 | 2.11                        | 17.67             |  |  |
| Pen Malaysia    | 132,631 | 2,495.5  | 1283.8                | 147.6                       | 1064.0            | 330.98                        | 170.28                | 19.56                       | 141.11            |  |  |
| Sabah           | 73,631  | 2,560    | 1,190                 | 190                         | 1,180             | 188.50                        | 87.62                 | 13.99                       | 86.89             |  |  |
| Sarawak         | 124,450 | 3,640    | 1,250                 | 240                         | 2,150             | 453.00                        | 155.56                | 29.87                       | 267.57            |  |  |
| FT Labuan       | 91      | 3,100    | 1,480                 | 150                         | 1,470             | 0.28                          | 0.13                  | 0.01                        | 0.14              |  |  |
| East Malaysia   | 198,172 | 3,238.5  | 1,227.8               | 221.4                       | 1,789.3           | 641.78                        | 243.31                | 43.87                       | 354.60            |  |  |
| Malaysia        | 330,803 | 2,940.6  | 1,250.3               | 191.8                       | 1,498.5           | 972.78                        | 413.60                | 63.45                       | 495.71            |  |  |

#### Priorities for Development for Alternative Water Resources

|                                               |        |       |          |          |           | Pr     | riority | v Rati   | ıg         |        |       |       |         |        |
|-----------------------------------------------|--------|-------|----------|----------|-----------|--------|---------|----------|------------|--------|-------|-------|---------|--------|
| Alternative Water Source                      | Perlis | Kedah | P Pinang | Kelantan | Terenggan | Pahang | Perak   | Selangor | N Sembilan | Melaka | Johor | Sabah | Sarawak | Labuan |
| Rainfall Harvesting                           | Н      | Ν     | Н        | L        | L         | L      | L       | Н        | Ν          | N      | Ν     | Ν     | N       | Н      |
| Recycling of Treated Sewerage                 | Ν      |       | Н        | L        | L         | L      | L       | Н        | L          | L      | L     | L     | L       | Н      |
| Desalination                                  | Ν      |       | Н        | L        | L         | L      | L       | Ν        | L          | L      | L     | L     | L       | Н      |
| Natural Lakes / Pond / Wetlands               | Н      | NA    | Н        | L        | L         | L      | L       | Ν        | L          | Ν      | L     | L     | L       | Н      |
| Interbasin/State Transfer                     | Н      |       | Н        | NA       | NA        | NA     | NA      | Н        | NA         | N      | NA    | NA    | NA      | Н      |
| Island Water Supplies                         |        |       |          |          |           |        |         |          |            |        |       |       |         |        |
| Water Importation Via Pipelines<br>and Barges |        | Н     | Н        |          | Н         |        |         | Н        |            |        | Н     | Н     | Н       | Н      |
| Groundwater                                   |        | Н     | Н        |          | Н         |        |         | Н        |            |        | Н     | Н     | Н       | Н      |
| Groundwater Dams                              | NA     | Н     | Н        | NΛ       | L         | NA     | NA      | Н        | NA         | NA     | Н     | Н     | Н       | Н      |
| Water Reuse For Non-potable<br>Purposes       | NA     | Н     | Н        | NA       | L         | NA     | NA      | Н        |            | NA     | Н     | Ν     | Н       | Н      |
| Surface water collection                      |        | Н     | Н        |          | Ν         |        |         | Н        |            |        | Н     | Ν     | Н       | Н      |
| Desalination                                  |        | Ν     | Н        |          | Ν         |        |         | Ν        |            |        | Н     | Ν     | Н       | Н      |
| Source: NWRS 2011                             |        |       |          |          |           |        |         |          |            |        |       |       |         |        |

#### Total consumptive Water Demand Against Total Surface Water Availability For All Sectors

| States             | Land Area | То    | tal Consui | mptive W<br>(mm) | /ater den | nand  | Effective | Effective Excess/deficit (mm) - Unregulated Flo |         |         |         |         |
|--------------------|-----------|-------|------------|------------------|-----------|-------|-----------|-------------------------------------------------|---------|---------|---------|---------|
| Blates             | sq km     | 2010  | 2020       | 2030             | 2040      | 2050  | (mm)      | 2010                                            | 2020    | 2030    | 2040    | 2050    |
| Perlis             | 821       | 372.1 | 364.2      | 348.1            | 345.7     | 342.8 | 70.5      | (301.6)                                         | (293.7) | (277.6) | (275.2) | (272.3) |
| Kedah              | 9,500     | 307.6 | 313.2      | 299.1            | 302.4     | 302.8 | 112.5     | (195.1)                                         | (200.7) | (186.6) | (189.9) | (190.3) |
| Pulau Pinang       | 1,048     | 729.9 | 790.9      | 797.1            | 834.2     | 853.3 | 120.0     | (609.9)                                         | (670.9) | (677.1) | (714.2) | (733.3) |
| Kelantan           | 15,099    | 108.1 | 107.2      | 105.0            | 106.0     | 106.2 | 175.5     | 67.4                                            | 68.3    | 70.5    | 69.5    | 69.3    |
| Terengganu         | 13,035    | 67.8  | 74.8       | 74.4             | 76.6      | 78.7  | 253.5     | 185.7                                           | 178.7   | 179.1   | 176.9   | 174.8   |
| Perak              | 21,035    | 92.7  | 91.4       | 85.5             | 85.6      | 86.1  | 139.5     | 46.8                                            | 48.1    | 54.0    | 53.9    | 53.4    |
| Selangor           | 8,396     | 266.6 | 296.6      | 306.1            | 328.7     | 348.0 | 114.0     | (152.6)                                         | (182.6) | (192.1) | (214.7) | (234.0) |
| Pahang             | 36,137    | 20.1  | 26.2       | 24.8             | 25.2      | 26.5  | 165.0     | 144.9                                           | 138.8   | 140.2   | 139.8   | 138.5   |
| Negeri<br>Sembilan | 6,686     | 50.9  | 54.0       | 53.6             | 54.7      | 56.0  | 73.5      | 22.6                                            | 19.5    | 19.9    | 18.8    | 17.5    |
| Melaka             | 1,664     | 194.1 | 219.9      | 225.9            | 245.7     | 263.7 | 85.5      | (108.6)                                         | (134.4) | (140.4) | (160.2) | (178.2) |
| Johor              | 19,210    | 37.2  | 45.8       | 53.8             | 60.6      | 67.7  | 171.0     | 133.8                                           | 125.2   | 117.2   | 110.4   | 103.3   |
| Pen Malaysia       | 132,631   | 96.5  | 103.0      | 102.2            | 105.9     | 109.2 | 159.0     | 62.5                                            | 56.0    | 56.8    | 53.1    | 49.8    |
| Sabah              | 73,631    | 12.4  | 18.4       | 18.9             | 19.6      | 20.0  | 177.0     | 164.6                                           | 158.6   | 158.1   | 157.4   | 157.0   |
| Sarawak            | 124,450   | 8.5   | 17.4       | 17.1             | 17.5      | 18.1  | 220.5     | 212.0                                           | 203.1   | 203.4   | 203.0   | 202.4   |
| WP Labuan          | 91        | 197.7 | 264.3      | 285.0            | 304.0     | 318.0 | 322.5     | 124.8                                           | 58.2    | 37.5    | 18.5    | 4.5     |
| East<br>Malaysia   | 198,172   | 10.0  | 17.9       | 17.9             | 18.4      | 18.9  | 268.5     | 258.5                                           | 250.6   | 250.6   | 250.1   | 249.6   |
| Total<br>Malaysia  | 330,803   | 44.7  | 52.0       | 51.7             | 53.5      | 55.1  | 225.0     | 180.3                                           | 173.0   | 173.3   | 171.5   | 169.9   |



## What is Environmental Flow?

- International Union for Conservation of Nature (IUCN) (Dyson *et al.*, 2003) used the term "environmental flow" to identify the water left in the water body in order to support the aquatic ecosystems.
- The health and sustainability of river systems depend on adequate amounts of water passing through them.

#### **Estimation of Environmental Flows**

| No. | Approach/Estimation                                                                                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | <ul> <li>10% Average Annual Flow (AAF)</li> <li>NWRS, 1999, applied as "rule-of-thumb value of 10% of the average annual flow has therefore been adopted in the planning of the source works"</li> </ul> |
| 2   | Low flow of 7Q1, 7Q5 and 7Q10<br>(7-day low flow, for 1, 5 and 50 years)                                                                                                                                 |
| 3   | Tennant (Montana) Method                                                                                                                                                                                 |
| 4   | Smakhtin and Eriyagama Method (Recommended by NWRS 2011)                                                                                                                                                 |

# 5. Water Use – Issues and Challenges

# Water Use by Sectors

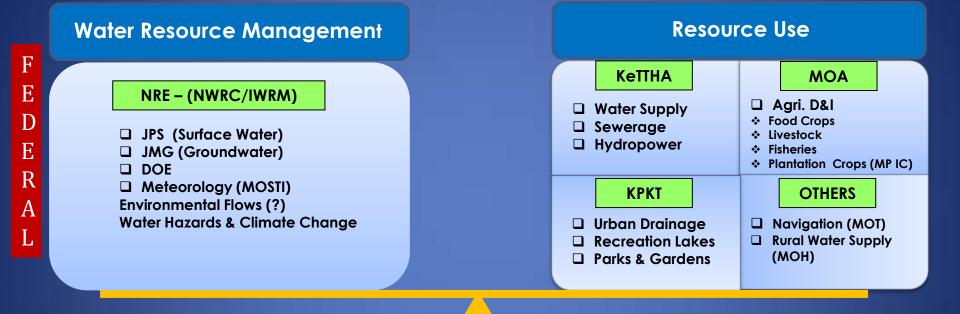
### **Consumptive Use**

- Potable Water
  - ✤ Domestic
  - ✤ Industrial
  - Commercial
  - ✤ Institutional

### • Agricultural Water

- Irrigated Paddy
- Non-paddy Crops (oil palm, rubber, fruits, flowers and vegetables
- Livestock
- Fisheries

### **Non-consumptive Use**


- Hydropower
- Navigation
- Recreation
- Eco-tourism

Issues and challenges mainly with regards to regulatory and pollution control through appropriate licensing and accompanying regulations, guidelines and enforcement

## Consumptive Water Use – Issues and Challenges

- Major challenge is mindset change among all <u>Water User agencies</u> (public and private) to shift from current sectoral to integrated management ("Think IWRM, Act Sectoral")
- Need also for a <u>Cultural Shift</u> to seek a viable balance between Water Supply Management(WSM) and Water Demand Management (WDM)
- WDM Colloquium 2009 ASM Task Force on WDM currently working on a Strategy Plan targeted at all water use sectors
- NWRS 2012 projections for <u>consumptive water demand by sectors</u> as follows:
  - <u>Potable Water</u> to meet Domestic, Industrial, Commercial, and Institutional needs; and
  - <u>Agricultural Water</u> for Irrigated Paddy, Non Paddy Crops, Livestock and Fisheries
- Develop appropriate strategies and action plans to ensure all water use sector targets are met through stakeholder consultations, collective action and shared partnerships
- Undertake R&D programs based on RNAs for each sector
- Conduct continuing AACB programs to ensure competent personnel at all levels to perform optimally according to the new paradigm

## **IWRM Water Balance: Malaysian Context**



 IWRM &IRBM (State Water Resources Authorities - LUAS, LUAK, SWRC, etc. - ,State Water Resources Committees, SEPUs)
 Environmental Flows Water Supply (JBA, Water Concessionaires)

- □ Agricultural D&I (JPS)
- Rivers & Waterways (JPS)
- Urban Drainage & Recreational Lakes (Local Authorities)

# A cultural shift



## **Defining Water Demand Management**

Water Demand Management - A critical element of the IWRM approach.

WDM - "Any measure or initiative that will result in the reduction of the expected water use or water demand"

## Or simply put

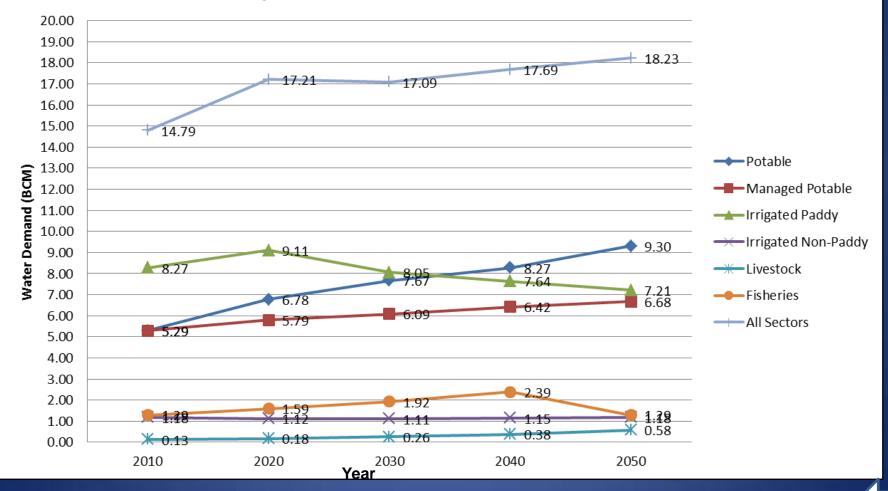
- "... making the most of the available water"
- " ... let every drop of water count"
- "... living within ones means"
- "... more crop per drop" in agriculture

"Narrow" and "Broad" approach to WDM The "narrow" definition: WDM influencing water demand only

### The "broad" definition: WDM includes:

- **Increased supply from non-traditional water** ulletsources:

  - $\checkmark$  Recharge, Recycling, Reuse (the 3 R's)
  - ✓ Leakage control
  - ✓ Rainwater harvesting
  - ✓ Desalination
  - ✓ Etc.


Water Footprint and "Virtual Water" considerations

## Consumptive Water Demand Projections (BCM)

| Sector                  | 2010  | 2020  | 2030  | 2040  | 2050  |
|-------------------------|-------|-------|-------|-------|-------|
| Potable                 | 5.29  | 6.78  | 7.67  | 8.27  | 9.30  |
| Managed Potable         | 5.29  | 5.79  | 6.09  | 6.42  | 6.68  |
| Irrigated Paddy         | 8.27  | 9.11  | 8.05  | 7.64  | 7.21  |
| Irrigated Non-<br>Paddy | 1.18  | 1.12  | 1.11  | 1.15  | 1.18  |
| Livestock               | 0.13  | 0.18  | 0.26  | 0.38  | 0.58  |
| Fisheries               | 1.29  | 1.59  | 1.92  | 2.39  | 1.29  |
| All Sectors             | 14.79 | 17.21 | 17.09 | 17.69 | 18.23 |

## Consumptive Water Demand Projections (BCM/Year)

#### **Consumptive Water Demand For Various Sectors**



## Potable Water Sector – Issues and Challenges

- NWRS 2011 <u>water demand projections</u> based on following factors:
  - Population
  - Per capita consumption (PCC)
  - Water demand in 4 main sectors:
    - Domestic , Industrial, Commercial, and Institutional
  - <u>Non-revenue water (NRW)</u>
  - Service factor
- Main challenge is to meet <u>NRW annual reduction</u> rates and <u>PCC targets</u>

# **NRW Reduction**

- The NRW is influenced by
  - Deterioration of pipe network
  - System pressure
  - Metering inaccuracies & billing inefficiencies
  - Illegal connections
- WDM 2009, SPAN reported Peninsular Malaysia <u>average of</u> <u>36%</u>, with a high of 53.2% (NS) and a low of 16.9% (Pg)
- SPAN also reported on <u>successful NRW reduction</u> between 2003 and 2008 from 43.9% to 33.9%
- Projected reduction achievable but requires CAPEX and strict enforcement



## **PCC Targets**

 NWRS 2011 Study – PCC for 2010 noted an average 230 l/c/d for urban areas and 160 l/c/d for rural areas. Projection for progressive reduction to 150 l/c/d and 80 l/c/d by 2050 which is the current norm in many developed countries (see below)

| Country | Belgium | Germany | UK  | France | Denmark | Austria | Singapore |
|---------|---------|---------|-----|--------|---------|---------|-----------|
| РСС     | 112     | 130     | 153 | 139    | 159     | 153     | 156       |

- Requires multi-stakeholder collective action involving:
  - Domestic/Commercial Consumers
  - Industrial Consumers
  - Water Treatment Plant Operators
  - Water Supply Operators
  - Consultants / Developers
  - Government

## **Stakeholder Role in PCC reduction**

#### Domestic/Commercial Consumers

- Cultivate habit of saving water.
- Invest on water saving fittings.
- Re-use of used water and rain water collection for non-potable purposes.
- Report pipe bursts, leaking pipes, reservoir overflows and water theft.

#### **Industrial Consumers**

- Adopt strategies to reduce consumption and re-use of used water.
- Recycle used water.
- Rainwater collection for non-potable purposes.

## Stakeholder Role in PCC reduction (2)

#### Water Treatment Plant Operators

 Reduce in-plant use of water

### Water Supply Operators

 Promote water saving/water conservation through Stakeholders
 Engagement Programme and Educational Outreach
 Programme

# Stakeholder Role in PCC reduction (3)

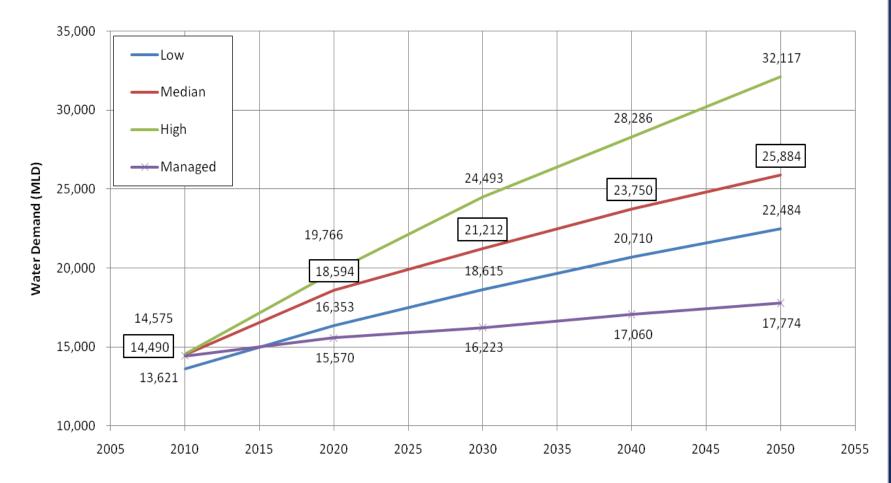
### **Consultants / Developers**

- Install water saving devices and fittings in new houses.
- Incorporate rain water harvesting in new houses and buildings.
- Strict supervision and quality materials.

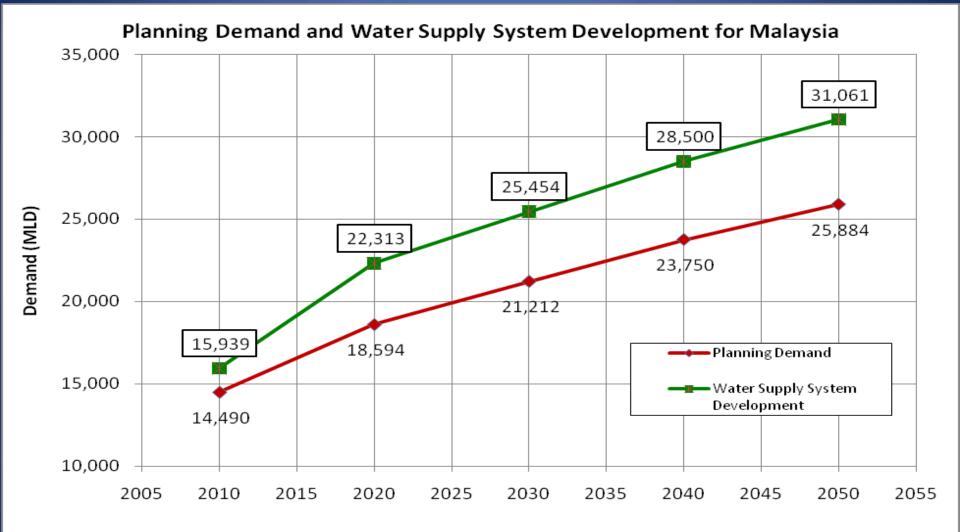
#### Government

- Appropriate tariff setting.
- Public education to promote water saving and impact of water demand management.
- Step up enforcement especially on water theft.
- Benchmarking

## Agricultural Water – Issues and Challenges


- NWRS 2011 focus is on 4 areas, namely irrigated paddy, non-paddy crops, livestock and fisheries. Recommends improved irrigation efficiencies and expand water demand management practices to achieve the <u>projected</u> <u>water demand</u> for each sub-sector.
- While the recommended options are necessary, the sector is in need of a mind-set change to a more expanded role from the traditional provider of D&I infrastructure to a more holistic <u>Agricultural Water Supply</u> <u>Development and Management</u> role in order to achieve "more crop per crop" to support the recent Dasar Agro-Makanan Negara and National Commodity Policy. It would entail the upgrading of rain-fed agriculture and revitalizing irrigated agriculture together with the introduction of instruments and mechanisms such as realistic water pricing, investment in better technologies, improving on-farm water management, and "virtual water" or agricultural water footprint considerations.

## **NWRS 2011 - WATER DEMAND FOR POTABLE WATER**


|                    | Land        | Proj   | ected Pota | ble Water | Demand (I | m/l/d) |       | Potable | Water dem | and (mm) |       |
|--------------------|-------------|--------|------------|-----------|-----------|--------|-------|---------|-----------|----------|-------|
| States             | Area<br>km² | 2010   | 2020       | 2030      | 2040      | 2050   | 2010  | 2020    | 2030      | 2040     | 2050  |
| Perlis             | 821         | 150    | 168        | 179       | 192       | 206    | 66.7  | 74.7    | 79.6      | 85.4     | 91.6  |
| Kedah              | 9,500       | 1,333  | 1,529      | 1,630     | 1,738     | 1,855  | 51.2  | 58.7    | 62.6      | 66.8     | 71.3  |
| Pulau Pinang       | 1,048       | 974    | 1,225      | 1,376     | 1,525     | 1,633  | 339.2 | 426.6   | 479.2     | 531.1    | 568.7 |
| Perak              | 21,035      | 1,058  | 1,306      | 1,462     | 1,639     | 1,812  | 18.4  | 22.7    | 25.4      | 28.4     | 31.4  |
| Selangor           | 8,396       | 4,037  | 4,896      | 5,371     | 5,975     | 6,477  | 175.5 | 212.8   | 233.5     | 259.8    | 281.6 |
| Negeri<br>Sembilan | 6,686       | 731    | 790        | 786       | 802       | 814    | 39.9  | 43.1    | 42.9      | 43.8     | 44.4  |
| Melaka             | 1,664       | 443    | 554        | 638       | 715       | 776    | 97.2  | 121.5   | 139.9     | 156.8    | 170.2 |
| Johor              | 19,210      | 1,506  | 1,925      | 2,280     | 2,526     | 2,716  | 28.6  | 36.6    | 43.3      | 48.0     | 51.6  |
| Pahang             | 36,137      | 974    | 1,054      | 1,099     | 1,156     | 1,231  | 9.8   | 10.6    | 11.1      | 11.7     | 12.4  |
| Terengganu         | 13,035      | 632    | 971        | 1,094     | 1,211     | 1,319  | 17.7  | 27.2    | 30.6      | 33.9     | 36.9  |
| Kelantan           | 15,099      | 395    | 564        | 745       | 933       | 1,118  | 9.5   | 13.6    | 18.0      | 22.6     | 27.0  |
| Pen Malaysia       | 132,631     | 12,233 | 14,982     | 16,660    | 18,412    | 19,957 | 33.7  | 41.2    | 45.8      | 50.7     | 54.9  |
| Sabah              | 73,631      | 1,049  | 1,695      | 2,005     | 2,250     | 2,405  | 5.2   | 8.4     | 9.9       | 11.2     | 11.9  |
| FT Labuan          | 91          | 53.1   | 72.2       | 83.9      | 92.5      | 100.6  | 197.7 | 264.3   | 285.0     | 304.0    | 318.0 |
| Sarawak            | 124,450     | 1,126  | 1,875      | 2,259     | 2,631     | 3,014  | 3.3   | 5.5     | 6.6       | 7.7      | 8.8   |
| East Malaysia      | 198,172     | 2,225  | 3,636      | 4,335     | 4,956     | 5,498  | 4.1   | 6.7     | 8.0       | 9.1      | 10.1  |
| Total<br>Malaysia  | 330,803     | 14,458 | 18,618     | 20,995    | 23,368    | 25,455 | 16.0  | 20.5    | 23.2      | 25.8     | 28.1  |

## NWRS 2011 – Potable Water Demand

#### **Projected Water Demand In Malaysia**

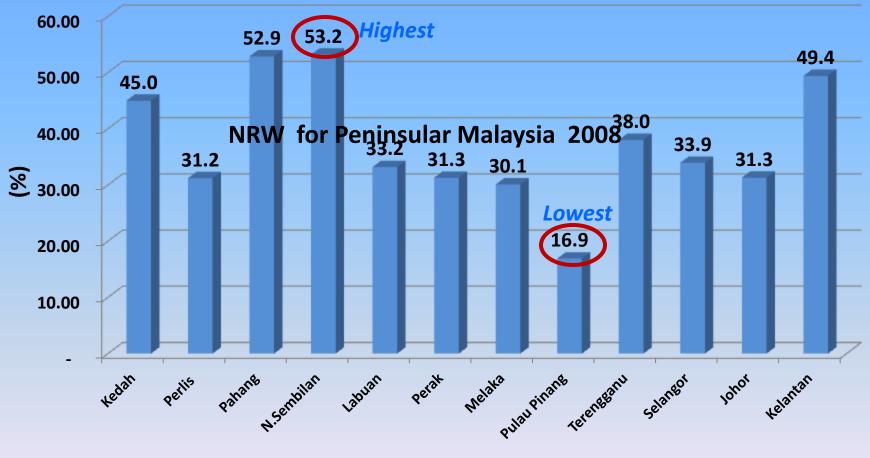


## NWRS 2011 - Planning Demand and Water Supply System Development Capacity for Malaysia



## Potable Water Projections – PCC targets and NRW Reduction Rates

#### - NRW Reduction Rates


| NRW        | Annual Reduction | 5 year |
|------------|------------------|--------|
| >55%       | 1.20%            | 6.0%   |
| 45% to 55% | 1.00%            | 5.0%   |
| 35% to 45% | 0.70%            | 3.5%   |
| 30% to 35% | 0.50%            | 2.5%   |
| 25% to 30% | 0.30%            | 1.5%   |
| 20% to 25% | 0.10%            | 0.5%   |
| <20%       | 0%               | 0%     |

#### **Target PCC for Managed Demand case**

|       | PCC I/c/d |      |      |      |      |      |  |  |  |  |
|-------|-----------|------|------|------|------|------|--|--|--|--|
|       | 2010      | 2015 | 2020 | 2030 | 2040 | 2050 |  |  |  |  |
| Urban | 230       | 215  | 200  | 180  | 165  | 150  |  |  |  |  |
| Rural | 160       | 145  | 130  | 110  | 95   | 80   |  |  |  |  |

## MANAGING NON REVENUE WATER LOSSES

## **NRW FOR PENINSULAR MALAYSIA 2008**



#### Current average NRW is 36%



## MANAGING NON REVENUE WATER LOSSES

### NRW% FOR SELANGOR BETWEEN 2003 AND 2008





#### **NWRS 2011 - WATER DEMAND FOR IRRIGATED PADDY CULTIVATION**

|                    | Land        | Project | ed Irrigat | ion Wate | r Demand | (mcm) | ]     | Irrigation | Water Den | nand (mm) | )     |
|--------------------|-------------|---------|------------|----------|----------|-------|-------|------------|-----------|-----------|-------|
| States             | Area<br>km² | 2010    | 2020       | 2030     | 2040     | 2050  | 2010  | 2020       | 2030      | 2040      | 2050  |
| Perlis             | 821         | 198     | 184        | 165      | 155      | 141   | 241.2 | 224.1      | 201.0     | 188.8     | 171.7 |
| Kedah              | 9,500       | 2,283   | 2,263      | 2,089    | 2,076    | 2,030 | 240.3 | 238.2      | 219.9     | 218.5     | 213.7 |
| Pulau Pinang       | 1,048       | 358     | 330        | 281      | 265      | 245   | 341.6 | 314.9      | 268.1     | 252.9     | 233.8 |
| Perak              | 21,035      | 1,476   | 1,352      | 1,160    | 1,084    | 1,010 | 70.2  | 64.3       | 55.1      | 51.5      | 48.0  |
| Selangor           | 8,396       | 720     | 655        | 555      | 516      | 482   | 88.3  | 80.3       | 68.1      | 63.3      | 59.1  |
| Negeri<br>Sembilan | 6,686       | 45      | 41         | 37       | 34       | 32    | 6.7   | 6.1        | 5.5       | 5.1       | 4.8   |
| Melaka             | 1,664       | 86      | 86         | 62       | 62       | 62    | 51.7  | 51.7       | 37.3      | 37.3      | 37.3  |
| Johor              | 19,210      | 43      | 39         | 35       | 33       | 30    | 2.2   | 2.0        | 1.8       | 1.7       | 1.6   |
| Pahang             | 36,137      | 330     | 514        | 436      | 405      | 379   | 9.1   | 14.2       | 12.1      | 11.2      | 10.5  |
| Terengganu         | 13,035      | 464     | 428        | 373      | 351      | 323   | 35.6  | 32.8       | 28.6      | 26.9      | 24.8  |
| Kelantan           | 15,099      | 1,190   | 1,112      | 1,010    | 948      | 873   | 78.8  | 73.6       | 66.9      | 62.8      | 57.8  |
| Pen Malaysia       | 132,631     | 7,193   | 7,004      | 6,203    | 5,929    | 5,607 | 54.3  | 52.9       | 46.9      | 44.8      | 42.4  |
| Sabah              | 73,631      | 450     | 655        | 575      | 533      | 496   | 6.1   | 8.9        | 7.8       | 7.2       | 6.7   |
| FT Labuan          | 91          | 0       | 0          | 0        | 0        | 0     | -     | -          | -         | -         | -     |
| Sarawak            | 124,450     | 623     | 1,453      | 1,271    | 1,179    | 1,102 | 5.0   | 11.7       | 10.2      | 9.5       | 8.9   |
| East Malaysia      | 198,172     | 1,073   | 2,108      | 1,846    | 1,712    | 1,598 | 5.4   | 10.6       | 9.3       | 8.6       | 8.1   |
| Total Malaysia     | 330,803     | 8,266   | 9,112      | 8,049    | 7,641    | 7,205 | 25.0  | 27.6       | 24.3      | 23.1      | 21.8  |

#### **IRRIGATION DEMAND- EFFICIENCIES**

| Invigation Cohomo | Irrigation Efficiencies (%) |      |      |      |      |  |  |  |  |  |
|-------------------|-----------------------------|------|------|------|------|--|--|--|--|--|
| Irrigation Scheme | 2010                        | 2020 | 2030 | 2040 | 2050 |  |  |  |  |  |
| Granary           | 50                          | 50   | 55   | 55   | 60   |  |  |  |  |  |
| MADA*             | 70                          | 70   | 75   | 75   | 75   |  |  |  |  |  |
| Mini Granary      | 40                          | 40   | 50   | 50   | 50   |  |  |  |  |  |
| Minor Schemes     | 40                          | 40   | 50   | 50   | 50   |  |  |  |  |  |

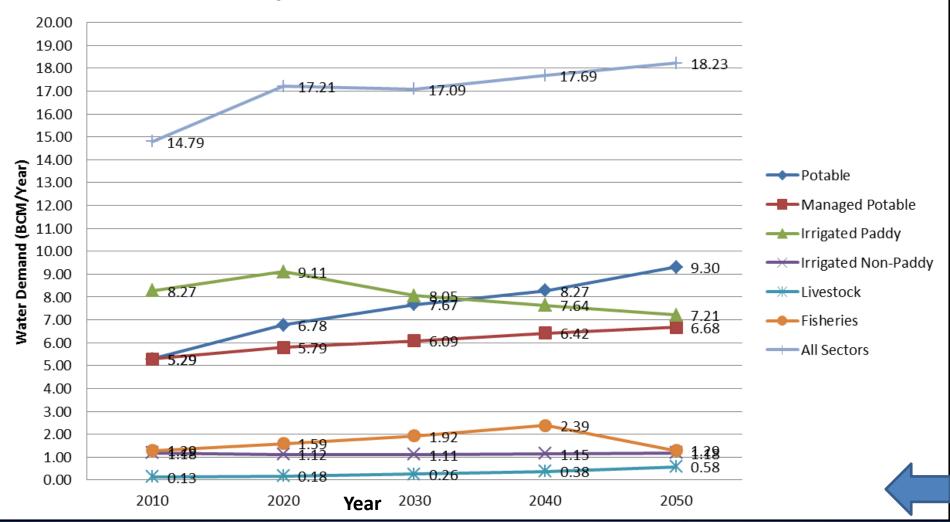
#### Water Demand Management

- i. Farming Practices
  - a. System of Rice Intensification (SRI) no standing water weed control
  - b. Group farming to enable higher level of mechanisation and water management
  - c. On-farm water management Stop irrigation supply at 15 days before scheduled drainage date.
- ii. Water Pricing by Metering
  - a. Measure and record all water used
  - b. Charge use of irrigated water by metering (for group commercial farming)

### **NWRS 2011 - WATER DEMAND FOR NON-PADDY CROPS**

|                 | Land                    | Non    | -Paddy | Crops De | emand (r | ncm)   | N     | on-Paddy | Crops Der | nand (mn | 1)    |
|-----------------|-------------------------|--------|--------|----------|----------|--------|-------|----------|-----------|----------|-------|
| States          | Area<br>km <sup>2</sup> | 2010   | 2020   | 2030     | 2040     | 2050   | 2010  | 2020     | 2030      | 2040     | 2050  |
| Perlis          | 821                     | 51.9   | 52.0   | 52.1     | 52.2     | 52.4   | 63.25 | 63.31    | 63.42     | 63.57    | 63.84 |
| Kedah           | 9,500                   | 145.9  | 146.1  | 146.5    | 147.0    | 148.0  | 15.36 | 15.38    | 15.42     | 15.48    | 15.58 |
| Pulau Pinang    | 1,048                   | 39.5   | 39.5   | 39.6     | 39.8     | 40.1   | 37.65 | 37.72    | 37.83     | 38.01    | 38.29 |
| Perak           | 21,035                  | 64.9   | 65.4   | 66.3     | 67.7     | 69.9   | 3.08  | 3.11     | 3.15      | 3.22     | 3.32  |
| Selangor        | 8,396                   | 36.0   | 37.3   | 39.4     | 42.7     | 48.2   | 4.29  | 4.44     | 4.69      | 5.09     | 5.73  |
| Negeri Sembilan | 6,686                   | 23.6   | 23.7   | 23.8     | 24.0     | 24.4   | 3.53  | 3.54     | 3.56      | 3.59     | 3.65  |
| Melaka          | 1,664                   | 69.3   | 69.6   | 69.9     | 70.5     | 71.5   | 41.66 | 41.80    | 42.01     | 42.37    | 42.96 |
| Johor           | 19,210                  | 99.0   | 101.3  | 104.9    | 110.9    | 120.7  | 5.15  | 5.27     | 5.46      | 5.77     | 6.28  |
| Pahang          | 36,137                  | 32.8   | 33.4   | 34.6     | 36.3     | 39.3   | 0.91  | 0.93     | 0.96      | 1.01     | 1.09  |
| Terengganu      | 13,035                  | 183.9  | 184.1  | 184.3    | 184.6    | 185.2  | 14.11 | 14.12    | 14.14     | 14.16    | 14.20 |
| Kelantan        | 15,099                  | 292.0  | 292.0  | 292.0    | 293.0    | 294.0  | 19.34 | 19.34    | 19.34     | 19.41    | 19.47 |
| Pen Malaysia    | 132,631                 | 1038.8 | 1044.3 | 1053.3   | 1068.8   | 1093.6 | 7.83  | 7.87     | 7.94      | 8.06     | 8.25  |
| Sabah           | 73,631                  | 72.6   | 73.3   | 74.2     | 75.2     | 76.6   | 0.99  | 1.00     | 1.01      | 1.02     | 1.04  |
| FT Labuan       | 91                      | 0      | 0      | 0        | 0        | 0      | 0     | 0        | 0         | 0        | 0     |
| Sarawak         | 124,450                 | 5.1    | 5.4    | 5.5      | 5.8      | 5.9    | 0.04  | 0.04     | 0.04      | 0.05     | 0.05  |
| East Malaysia   | 198,172                 | 77.7   | 78.8   | 79.7     | 81.0     | 82.5   | 0.40  | 0.40     | 0.40      | 0.40     | 0.40  |
| Total Malaysia  | 330,803                 | 1,117  | 1,123  | 1,113    | 1,150    | 1,176  | 3.38  | 3.40     | 3.43      | 3.48     | 3.55  |

### **NWRS 2011 - Water Demand for Livestock**

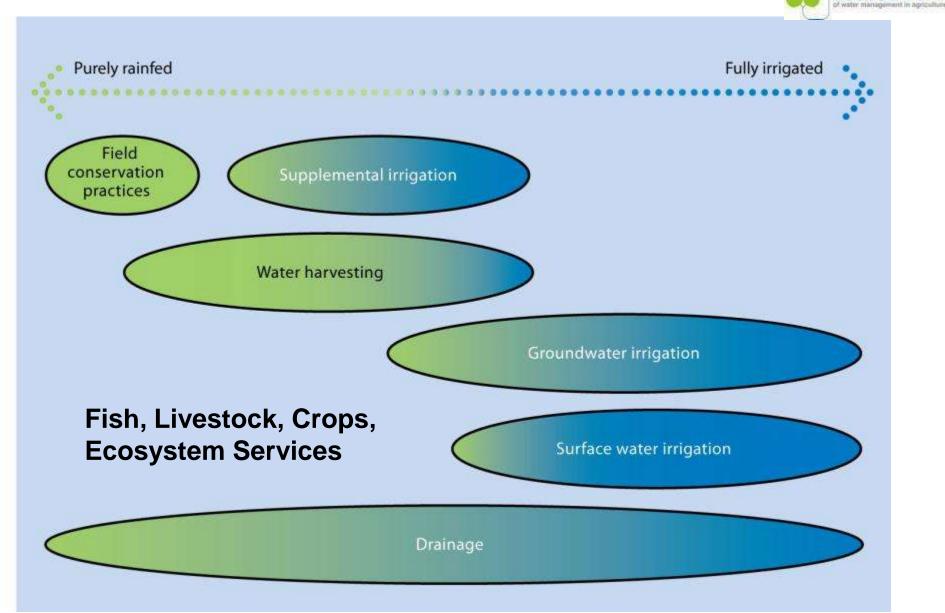

|                    | Land        |       | Live  | estock (m | cm)   |       |       | Liv   | vestock (n | nm)   |       |
|--------------------|-------------|-------|-------|-----------|-------|-------|-------|-------|------------|-------|-------|
| States             | Area<br>km² | 2010  | 2020  | 2030      | 2040  | 2050  | 2010  | 2020  | 2030       | 2040  | 2050  |
| Perlis             | 821         | 0.9   | 1.7   | 3.3       | 6.5   | 12.8  | 1.07  | 2.09  | 4.07       | 7.97  | 15.62 |
| Kedah              | 9,500       | 6.5   | 8.4   | 11.2      | 15.2  | 21.3  | 0.68  | 0.89  | 1.18       | 1.60  | 2.24  |
| Pulau Pinang       | 1,048       | 11.9  | 12.2  | 12.5      | 12.8  | 13.1  | 11.35 | 11.64 | 11.93      | 12.23 | 12.54 |
| Perak              | 21,035      | 22.1  | 28.6  | 38.5      | 51.2  | 69.4  | 1.05  | 1.36  | 1.83       | 2.43  | 3.30  |
| Selangor           | 8,396       | 8.6   | 11.3  | 14.9      | 20.2  | 27.9  | 1.00  | 1.30  | 1.80       | 2.40  | 3.30  |
| Negeri<br>Sembilan | 6,686       | 4.9   | 8.1   | 10.8      | 14.8  | 21.1  | 0.74  | 1.21  | 1.61       | 2.22  | 3.16  |
| Melaka             | 1,664       | 6.0   | 8.1   | 11.1      | 15.4  | 22.0  | 3.58  | 4.86  | 6.65       | 9.27  | 13.22 |
| Johor              | 19,210      | 23.4  | 37.8  | 60.5      | 97.8  | 158.6 | 1.22  | 1.97  | 3.15       | 5.09  | 8.26  |
| Pahang             | 36,137      | 8.1   | 14.2  | 25.7      | 47.9  | 91.6  | 0.22  | 0.39  | 0.71       | 1.33  | 2.54  |
| Terengganu         | 13,035      | 5.1   | 8.1   | 12.9      | 21.4  | 36.5  | 0.39  | 0.62  | 0.99       | 1.64  | 2.80  |
| Kelantan           | 15,099      | 6.1   | 8.7   | 12.1      | 18.8  | 28.5  | 0.40  | 0.58  | 0.80       | 1.25  | 1.89  |
| Pen Malaysia       | 132,631     | 103.6 | 147.2 | 213.6     | 322.1 | 502.9 | 0.78  | 1.11  | 1.61       | 2.43  | 3.80  |
| Sabah              | 73,631      | 6.9   | 8.5   | 10.7      | 13.8  | 18.5  | 0.09  | 0.12  | 0.10       | 0.17  | 0.25  |
| FT Labuan          | 91          | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   |
| Sarawak            | 124,450     | 18.3  | 24.2  | 32.1      | 42.7  | 56.9  | 0.15  | 0.19  | 0.26       | 0.34  | 0.46  |
| East Malaysia      | 198,172     | 25.2  | 32.7  | 42.8      | 56.5  | 75.4  | 0.13  | 0.17  | 0.22       | 0.29  | 0.38  |
| Total Malaysia     | 330,803     | 128.8 | 179.9 | 256.4     | 378.6 | 578.3 | 0.39  | 0.54  | 0.78       | 1.14  | 1.75  |

### **NWRS 2011 - Water Demand for Fisheries**

|                    | Land          | Fi    | sheries W | /ater Dem | and (MCM | 1)    |      | Fisheries | Water Den | nand (mm) |       |
|--------------------|---------------|-------|-----------|-----------|----------|-------|------|-----------|-----------|-----------|-------|
| States             | Area<br>sq km | 2010  | 2020      | 2030      | 2040     | 2050  | 2010 | 2020      | 2030      | 2040      | 2050  |
| Perlis             | 821           | 9.4   | 10.4      | 11.5      | 12.7     | 14.1  | 11.5 | 12.7      | 14.0      | 15.5      | 17.1  |
| Kedah              | 9,500         | 136.1 | 157.9     | 183.2     | 212.7    | 246.8 | 14.3 | 16.6      | 19.3      | 22.4      | 26.0  |
| Pulau Pinang       | 1,048         | 58.6  | 68.0      | 78.9      | 91.5     | 106.2 | 55.9 | 64.9      | 75.3      | 87.3      | 101.4 |
| Perak              | 21,035        | 325.4 | 416.6     | 533.3     | 682.6    | 873.8 | 15.5 | 19.8      | 25.4      | 32.5      | 41.5  |
| Selangor           | 8,396         | 159.2 | 194.1     | 236.6     | 288.4    | 351.5 | 19.5 | 23.8      | 29.0      | 35.4      | 43.1  |
| Negeri<br>Sembilan | 6,686         | 55.1  | 64.0      | 74.3      | 86.2     | 100.0 | 8.2  | 9.6       | 11.1      | 12.9      | 15.0  |
| Melaka             | 1,664         | 63.9  | 70.5      | 77.9      | 86.1     | 95.1  | 38.4 | 42.4      | 46.8      | 51.7      | 57.1  |
| Johor              | 19,210        | 158.4 | 235.4     | 286.9     | 349.7    | 426.3 | 8.2  | 12.3      | 14.9      | 18.2      | 22.2  |
| Pahang             | 36,137        | 206.4 | 239.6     | 278.0     | 322.5    | 374.4 | 5.7  | 6.6       | 7.7       | 8.9       | 10.4  |
| Terengganu         | 13,035        | 35.2  | 42.9      | 52.3      | 127.6    | 155.5 | 2.7  | 3.3       | 4.0       | 9.8       | 11.9  |
| Kelantan           | 15,099        | 37.1  | 43.1      | 50.0      | 58.1     | 67.4  | 2.5  | 2.9       | 3.3       | 3.8       | 4.5   |
| Pen Malaysia       | 132,631       | 1,245 | 1,543     | 1,863     | 2,318    | 2,811 | 9.4  | 11.7      | 14.1      | 17.5      | 21.2  |
| Sabah              | 73,631        | 21.1  | 25.3      | 30.4      | 36.5     | 43.8  | 0.3  | 0.3       | 0.4       | 0.5       | 0.6   |
| FT Labuan          | 91            | -     | -         | -         | -        | -     | -    | -         | -         | -         | -     |
| Sarawak            | 124,450       | 20.7  | 24.9      | 29.9      | 35.8     | 43.0  | 0.2  | 0.2       | 0.2       | 0.3       | 0.3   |
| East Malaysia      | 198,172       | 42    | 50        | 60        | 72       | 87    | 0.2  | 0.3       | 0.3       | 0.4       | 0.4   |
| Total Malaysia     | 330,803       | 1,287 | 1,593     | 1,923     | 2,390    | 2,898 | 3.9  | 4.8       | 5.8       | 7.2       | 8.8   |

## Consumptive Water Demand Projections (BCM/Year)

#### **Consumptive Water Demand For Various Sectors**




# Agricultural Water Management

in Malaysia

## Consider the Full Range of Agricultural Water Management Options

Comprehensive



## Agricultural Water Management in Malaysia Points to Ponder against CA Policy Action Recommendations,

DAN and NWRP 2012

- 1. Change the way we think about Water and Agriculture;
  - Agriculture is a major user of water resources and a major stakeholder at the river basin level
  - Water management for agriculture should account for the complete spectrum from pure rain-fed, via rainwater harvesting, to supplemental or deficit, to full irrigation.
  - Agricultural Water Supply and Management:
    - MOA food crops, floriculture, livestock, fisheries and aquaculture
    - KPPK Plantation crops: oil palm, rubber, timber, cocoa, pepper and tobacco
  - IWRM and IRBM under NWRP requires shared governance at the river basin level addressing Q&Q of water withdrawals and return flows.
  - Case for an expanded and multi-disciplinary role of BPSP (MOA)!

### Agricultural Water Management in Malaysia (2) Points to Ponder against CA Policy Action Recommendations, DAN and NWRP 2012

- 2. Fight poverty by improving access to agricultural water and its use;
  - Need for targeted program to improve productivity through innovative water supply and management services especially to those living in more remote rural areas currently practicing subsistence farming or shifting agriculture
- 3. Manage agriculture to enhance ecosystem services;
  - Little attention currently more due lack of awareness
  - Knowledge enhancement through awareness programs and training
  - Need to build into the planning process when implementing or managing agricultural systems

### Agricultural Water Management in Malaysia (3) Points to Ponder against CA Policy Action Recommendations, DAN and NWRP 2012

- 4. Increase the productivity of water;
  - Essential component of water demand management
  - Though the concept of "more crop per drop" has been around for sometime and exhorted frequently in public statements, yet to see concerted action taken, monitored and reported periodically based on appropriate productivity indices (such as Kg/Cu.m)
  - Earlier efforts made in MADA and Krian in collaboration with IWMI merit further pursuance and implementation as a national program towards improved efficiency and performance targets
- 5. Upgrade rain-fed systems a little water will go along way;
  - Relevant for both small-holder farming and in the plantation sector
  - Controlled drainage systems augmented by minimal supplemental irrigation to meet crop requirements during critical periods is known to substantially improve yields and crop productivity

### Agricultural Water Management in Malaysia (3) Points to Ponder against CA Policy Action Recommendations, DAN and NWRP 2012

- 6. Adapt yesterday's irrigation systems to tomorrow's needs;
  - Review and revitalize existing irrigation systems for greater system performance and productivity
  - Efficiency improvements to mono-crop D&I systems at the primary, secondary, tertiary and on-farm levels especially in the granary areas
  - Innovative and flexible systems in other areas to enable multiple cropping of high value food crops and floriculture targeted under DAN
  - Reuse and Recycling to improve system efficiency (Case example: MADA)
  - Use of waste water for agriculture (such as in fodder for livestock), groundwater recharge, and soil moisture enhancement
  - Aquaculture support systems

### Agricultural Water Management in Malaysia (4) Points to Ponder against CA Policy Action Recommendations, DAN and NWRP 2012

- 7. Reform the reform process targeting state water institutions;
  - Shared Governance required under NWRP 2012 requires participation of all water users and stakeholders to ensure greater efficiency and performance especially at the river basin scale.
  - Capacity building in IWRM to acquire the desired skills & competence
- 8. Deal with tradeoffs and make difficult choices (*Water Storage Safeguard against Climate Change*).
  - Tradeoffs especially in "closed" river basins opting for lesser quality water for agricultural purposes when in competition or in conflict with domestic and industrial water supply
  - Adopt and implement ILBM in managing lakes and reservoirs developed for agricultural use and in collaboration with other users when they are multi-purpose dams.

# 6. STI and Water

## ASM Mega Science Framework Study for Sustained National Development (2011-2050)

- The mission of ASM is to pursue, encourage and enhance excellence in the field of science, engineering and technology for the development of the nation and the benefit of mankind
- The above mentioned Study begun in the year 2010 is to establish the framework or roadmap and identify the type and impact of science, technology and innovation (STI) and the areas of development on which STI will be applied to generate maximum sustained economic growth and prosperity for the country. The Study initially focused on the following sectors:
  - Water
  - Energy
  - Health
  - Agriculture
  - Biodiversity

ASM Mega Science Framework Study for Sustained National Development (2011-2050) –(2)

 The Study has since been completed and the highlights pertaining to the Water Sector report are as follows:

The Study noted that 10 Economic Sectors influenced by water are as follows:

| Agriculture | Ecosystem Services |
|-------------|--------------------|
| Forestry    | Urban/domestic     |
| Fisheries   | Health             |
| Industry    | Education          |
| Tourism     | Water management   |
|             |                    |

ASM Mega Science Framework Study for Sustained National Development (2011-2050) –(3)

- STI opportunities found in 2 discrete areas:
  - 1. Sustaining the Resource
  - 2. Creating new wealth
- The Study went on to identify some 70 STIs which were then subject to a Return-Risk Analysis from which 11 promising STIs emerged under the first category while another 10 STIs fell under the second.
- The total of 21 STIs are listed under 7 themes:

# 21 STIs in 7 water themes

#### Water Supplies

- Urban runoff
- Rainfall
- Ground water
- Conjunctive use

#### Waste Management

- Zero waste
- Point & non-point source pollution
- Advanced Wastewater Treatment

#### Water Management

- Tourism
- Urban
- Coastal
- High value ecosystem

# 21 STIs in 7 water themes (2)

#### Agriculture

- Sustainable Aquaculture
- Irrigation Flow

#### **Support Exports**

- Bottled Water
- Water Purification Unit

#### **Knowledge Product**

- Tourism
- Urban
- Coastal
- High value ecosystem

#### **Knowledge/Education**

- Research centre
- Value ecosystem services
- Reform education

## **Concluding Remarks**

- Malaysia has already begun feeling the pressures on its water resources, the outcome of population growth, increased economic activity, improved standards of living, rapid urbanisation, and lack of effective pollution control measures. Blessed with fairly abundant rainfall, these problems can easily be overcome through effective water governance. Despite the adoption of IWRM since the turn of this century, sectoral approaches to water resources management have dominated and still prevail.
- The much awaited NWRP 2012 was formally unveiled in March 2012 which has underlined WR security, WR sustainability, and collaborative governance as its policy principles. Malaysia has also subscribed to the green economy which further reinforces and adds another dimension to the IWRM agenda with linkages to the so-called Water-Food-Energy nexus.
- "The Future We Want" report, the outcome from the recent Rio+20 Earth Summit held in June 2012 includes similar aspirations for resources management.
- Turning policy into action and concerted and collective efforts by all stakeholders from both sides of the IWRM divide of "resource management" and "resource use" is now the key towards achieving the future we want under Vision 2020. It should be accompanied by the development of competent human capital and the application of sound STI to ensure sustainability.
- It is indeed now a "Time for Solutions" and to "Walk the Talk"

#### **Integrated Water Resource Management in Malaysia**







Agricultural Water Management Environment